	IES AND FOLLOW-UP FEASIBILITY STUDY OURCING OF EV BATTERIES
Mette Rames (Viegand Maagøe) -presenting Mette Rames, Kristian Madsen, Jan Viegand (Matthias Pfaff, Denis Stijepic (Fraunhofer ISI) November 5 2019	Viegand Maagøe A/S) – <u>mra@viegandmaagoe.dk</u>
viegand maagøe energy people	Fraunhofer

Long-list of materials, based on BOMs from the preparatory study	Criteria for short-listing materials and data collection	Short-list of materials critical to regulate
RESULTS		
 Li Ni Co Mn Al Fe Cu 	 World production End-use Forecasts and reserves Governance Environment, human health and working conditions Ciritical raw material rating 	 Cobalt Lithium Nickel (Manganese) (Graphite)
PC (graphite)		

	Lithium, Li*	Nickel, Ni	Manganese, Mn	Cobalt, Co	Graphite, natural, (
Global Annual production (metric ton)	76,000	2,212,000	17,366,000	134,000	1,088,000
EU 2020 demand for EV batteries (metric ton)	5,000	5,000	5,000	5,000	25,000
EU 2030 demand for EV batteries (metric ton)	90,000	210,000	105,000	60,000	550,000
Price (EUR/ton)	9,900€ 11,700€	15,400€	1,800€	32,500€	2,700€
All batteries share % (2019)	56%	6%	2%	49%	8%
EV battery share % (2019)	39%	3%	2%	9%	6%
Battery types	All	NMC, NCA	LMO, NMC	LCO, NMC, NCA	All
Political stability (% unstable					
sourcing)	9%	74%	70%	81%	97%
EU Economic importance**	2.4	4.8	6.1	5.7	2.9
EU Supply Risk**	1.0	0.3	0.9	1.6	2.9
Critical Raw Material (EU)**	Non-critical	Non-critical	Non-critical	Critical	Critical
CO2-emission (kgCO2/kg)	2 (brine) 27 (hard rock)	5.25-10	6	1.45-10	1-4.4
Environmental risk***	Low	Very high	High	Very high	Low
Working condition risk***	Low	Low	Moderate	Very high	Low
Human health risk***	Low	High	Moderate	Moderate	Moderate

	Cobalt	Lithium	Nickel
Environment	Water pollution Air pollution (dust)	GHG emissions Water depletion	Water pollution/toxic waste Acid rain
Human health	Respiratory disease Birth defects		Respiratory disease
Working conditions	Artisanal mining Child labour Lack of regulation		Lack of regulation Human rights risks
 Nature of risk Location of risk a 	ind supply chain step	1	

10

Based on a study on material sourcing produced by I	Drive
Sustainability <u>https://drivesustainability.org/wp-</u>	
content/uploads/2018/07/Material-Change_VF.pdf	
Drive sustainability categories	Our categories
Artisanal and small-scale mining (ASM)	Working conditions
Child labour and forced labour	Working conditions
Incidences of overlap with areas of conservation importance	Environment
Potential of acid discharge to the environment	Environment
Potential for harm from hazardous materials and chemicals	Human Health
Preconditions for radioactive materials in ore/tailings	Human Health
uissend 🛒	unhofer 🏏 VIto